
CONSTRAINTS IN GENETIC PROGRAMMING

Final Report

NASA/ASEE Summer Faculty Fellowship Program - 1995

Johnson Space Center

Prepared By:

Academic Rank:

University & Department:

NASA/JSC

Directorate:

Division:

Branch:

JSC Colleague:

Date Submitted:

Contract Number:

Cezary Z. Janikow, Ph.D.

AssistantProfessor

University of Missouri - St. Louis

Department of Mathematics and

Computer Science

St. Louis, MO 63121

Engineering

Automation, Robotics and Simulation

Intelligent Systems

Dennis Lawler

July 20, 1995

NGT-44-001-800

ii- 1

ABSTRACT

Genetic programming refersto a classof geneticalgorithmsutilizinggenericrepresen-

tationin the form of program trees.For a particularapplication,one needs to provide

the set offunctions,whose compositionsdetermine the space of program structuresbeing

evolved,and the set of terminals,which determine the space of specificinstancesof those

programs. The algorithm searchesthe space for the best program for a given problem,

applyingevolutionarymechanisms borrowed from nature.

Genetic algorithmshave shown greatcapabilitiesinapproximately solvingoptimization

problems which could not be approximated or solvedwith other methods. Genetic pro-

gramming extends theircapabilitiesto deaJ with a broader varietyof problems. However,

italsoextends the sizeof the searchspace,which oftenbecomes too largeto be effectively

searchedeven by evolutionarymethods. Therefore,our objectiveisto utilizeproblem con-

straints,ifsuch can be identified,to restrictthisspace. In thispublication,we propose

a genericconstraintspecificationlanguage,powerfulenough for a broad classof problem

constraints.This language has two elements - one reduces only the number of program

instances,the other reducesboth the space ofprogram structuresas wellastheirinstances.

With thislanguage,we definethe minimal setof complete constraints,and a setof opera-

torsguaranteeingoffspringvalidityfrom validparents.We alsoshow that theseoperators

are not lessefficientthan the standard geneticprogramming operatorsifone preprocesses
the constraints- the necessarymechanisms are identified.

11 -2

INTRODUCTION

Evolutionary problem solving simulates nature to search for a solution. First, represen-

tation for potential solutions must be defined, along with an evaluation function to quantify

differentsolutions.A number ofsolutionsaresimultaneouslyprocessedin a simulatedpop-

ulation.Individualsolutionsundergo simulatedevolution:Darwinian selectivepressureis

used forsurvivaldetermination,mutation isusedto alterindividualsolutions,and crossover

isused for informationinheritancefrom usuallytwo parentsto one or two offspring.

Genetic programming (GP) [5,6]isone of the most recentevolutionarymethods. It

differsfrom others,such as the well-known geneticalgorithms (GAs) [2,3],by itsrepre-

sentation- an individualsolutionisa high levelprogram, structuredas a treerepresenting

the dynamic program structure.This allows,for example, forthe learningof analytical

functionaldescriptions[5]- which can not be accomplished with GAs.

A GP applicationrequiresspecificationofthe primitivefunctionsetand the terminals,

which can be used in any combination (the closureproperty)[5].However, by providing

the primitivefunctions(alongwith proceduralinterpretations),one explicitlydetermines

the setof plausibleexpressionsthatcan be evolved.For example, suppose we need to learn

the (unknown) functiony = sin(z)-cos(z + 2). Ifwe don't know the function,we do not

know that the solutionwillinvolvetrigonometricfunctions.Therefore,we may decide to

use the followingfunctionset {+, -, ,,/}. This willpreventthe exact solutionfrom being

discovered(thesu._cienc_/principlestatesthat one assumes thatthe functionsetincludes

allneeded functions).The evolved solutionwould have to be fairlycomplex for a satis-

factoryapproximation (ifpossibleat all,especiallygiven sizeconstraintsimposed on GP

programs). On the other hand, ifwe allow many functionsto participatein the primitive

set,we explodethe searchspace beyond manageability.Therefore,the GP approach isvery

sensitiveto the user'sinsights(inadditionto being very sensitiveto itsown parameters).

This willhopefullychange when methods aredeveloped to constrainthe space,to incorpo-

rateheuristics,to automaticallyselect/prunethe setofprimitives,to automaticallyupdate

the sensitiveparameters,etc.

An important issuefor any problem solvingmethod is that of handling constraints,

which are oftenpresent.Ifdisregarded,they may leadto infeasiblesolutions.On the other

hand, when properlyhandled they can reducetheamount ofsearchingrequired.Constraints

can be handled by evolutionaryalgorithms,especiallyby geneticalgorithms,where most

constraint-relatedresearchhas been done. However, a common problem isthatofgenerality

of any approach. Many GA approaches create specialized representations and/or operators,

which prohibit invalid solutions from occurring. Examples are a matrix representation for

the transportation problem and a permutation sequence for the traveling salesman problem.

Even though these approaches are very nicely crafted and are efficient, they are also hand-

tailored for the specific problems and must be redone for a new problem, a class of problems,

or a specific instance of a problem with different constraints. To avoid that, one needs to

provide a more general approach. One such approach has been studied in GAs - penalize

solutions which violate the constraints [8]. But this method is not perfect either. Even

though it is generic and only requires modification of the evaluation function, it is much

less efficient as it still allows explorations of infeasible problem subspaces, wasting resources

there. In addition, too relaxed a penalty can still allow generation of infeasible solutions.

11 -3

Too rigid a penalty may prohibit good solutions from being discovered [7].

The most desirable approach is to provide a constraint-specification language, and then

provide built-in mechanisms to handle those constraints, preferably by moving the search

into feasible subspaces only. The language should be powerful enough to express a broad

range of specific constraints that a particular problem may have. This has been done with

GAs for the class of linear constraints over a parameter space [7].

GP offers much greater capabilities than GAs by its variable length parameterized rep-

resentation. However, as mentioned, it must advance in many directions to enjoy more

practical applications. And constraints are an important aspect of such advancement. In

this paper, we propose a constraint handling methodology, which is based on the idea of a

constraint specification language. This language is presented and enforcement mechanisms

are provided. The language is not capable of expressing "any" constraint. However, it is
applicable to a broad range of problem constraints. Moreover, we show that the enforce-

ment mechanisms do not reduce the efficiency of the GP algorithm. In fact, the actual

search efficiency is greatly improved since the search is now conducted only in the feasible
subspace.

The idea is based on restricting both the space of program structures, and on reducing

the number of program instances for any particular program structure. In this paper, we

overview the various methods for processing constraints in genetic algorithms. Then, we

propose a constraint specification language for GP, which is easy to use. Afterwards, we
present transformations aimed at reducing the set of constraint specifications to a minimal

yet sufficient set, which is easy to enforce. Subsequently, we define mutation and crossover

to be "closed" in the program subspace specified by the specifications. That is, given valid
parents these operators generate only valid offspring. We also provide a method to initialize

the population of programs with only valid instances to ensure that the evolution will be

closed in the feasible subspace. Finally, we show that one may implement these operators
with the same level of e_ciency as the standard operators in unconstrained GP.

CONSTRAINTS IN GP AND GAs

Genetic programming is a special case (or a generalization, depending on the exact def-

inition) of genetic algorithms. Given a problem, a set of constants for the problem (e.g.,
program variables or actions) is specified, and a set of primitive functions is defined. Even-

tual program data can be included in the terminal set, or it can be hidden in interpretations

of functions. Compositions of functions determine the space of programs which can be ex-

pressed this way. What is sought is one of such programs, the one which solves the problem
the best way (given some criteria).

Discovery, or rather creation, of the best program is accomplished by evolution. A

population of initial programs (possibly random) is set, which then evolve by simulating

nature. In this simulation, current programs are evaluated (given problem criteria) and an
evaluation-based pressure is used to promote survival of better programs. Programs also

undergo mutation, and create offspring by means of crossover.

An obvious problem that GP tries to address is that of searching the infinite space of

possible programs. This is done by limiting this space as explained below. Our objective is
to further limit this space by additional constraints.

11 -4

Current Stateof the Art in ConstraintProcessingin GP

Except forADFs (automaticfunctiondefinitions)and a few tailoredapplications,there

isvery littlereportedwork on constraintsand methods forhandling them in GP [4,5,6].

In ADFs, constraintsrelatetodifferentiatingamong differentfunctionsand the program

being evolved. This has few implicationsforour objectives.The tailoredapplicationsare

not more helpful,sincethey aim at satisfyingconstraintsofvery specificfunctions(usually

a singleconstraint).

In general,the only other constraintused in GP relateto managing the complexity

of the evolution.This isdone by imposing restrictionson program size.Program sizeis

definedin one of two ways: eitherby the depth of the tree (proportionalto maximum

number of nestedfunctioncalls)or by the totalsizeof the tree (proportionalto the total

number offunctioncalls).Eithercaseisalways handled in one of two differentways:

• abandon the violatingprogram, and keep creatingnew ones untilone that satisfies

the constraintisgenerated(method i below),

• use the parent program insteadof the violatingoffspring(method 2 below).

These methods are fineifviolationsare rare.With the sizeconstraint,thisisindeed

the case.However, with new constraints,thisisunlikelyto be true and new methods will

have to be investigated.

Various Methods forHandling Constraints

In any evolutionarymethod (suchas GP, but especiallyin GA), constraintshave been,

or at leastcan be, handled ina number of ways. Diflicultiescome inimplementing some of

the ways, and in priordeterminationof which way might be the bestfora given problem

(ora classofproblems). Unfortunately,thereisno "silverbullet".

Genetic aigorithmsenjoy richermethodologies to deal with problem constraints.In

additionto thosetwo methods listedfordealingwith sizeconstraintsinGP, GA researchers

have used approaches such as modifications of the interpretation of a particular solution

(calledpher_otFpe),repairalgorithms,and penaltyfunctionsto penalizeinvalidsolutions.

A recentlyemerging approach isto provide "smart" operators,calledc/osed,which are

intended to produce only validoffspringfrom validparents. Such operatorshave been

proposed for GA parameter optimizationwith linearconstraints[7].

Objectivesand Methods

Because possibleconstraintsare endless,itisimpossibleto provideconstrainthandling

methods for specificconstraintsahead of time. On the other hand, we want to avoid

havingtoprovidesuch methods separatelyforeach problem,whenever aconstraintappears.

Therefore_our objectiveisto design a constraintspecificationlanguage able to express

constraintsencountered in a broad range of applications.Then, we could have generic

mechanisms processingthoseconstraintsso that

• only valid programs are evolved,

• the space of validprograms isconstrainedto reduce the effectivesearchspace.

ii -5

EXPLORATION OF CONSTRAINT SPECIFICATIONS

Search Space in GP

GP's problem space is defined by terminals T and functions F, where each fi E F has

a fixed arity a_. Function compositions determine the space of possible program structures.

Because the space is infinite, it is normally restricted by the aforementioned two methods

- restrict the number of nodes or restrict the maximal depth of a program. Terminals

are values which can appear in terminal nodes. They have no implications for program

structures. Instead, given a specific program structure, which serves as a template, terminals

determine the space of possible program ifistances. This space, for a particular program

structure, can again be infinite if infinite sets are allowed (such as real numbers). Therefore,

the space of all programs is determined by both F and T, and this space can be infinite in

two dimensions. One of these possibly infinite dimensions, the space of program structures,

is normally restricted by the size constraints. The other dimension, program instances of

a program structure, is restricted by the finite accuracy of computer representations. It is

assumed that this space contains the sought program. This assumption is the basis for GP
problem solving - the su._cie'ncy assumption.

T- and F- Constraint Specifications

We use two different kinds of constraint specifications, but, as we will see, they are not

completely independent. These are syntactic T-specificat_zr_ and semantic F-specifications.

Moreover, we will show that not all of them are really needed - after certain transformations,

only a few are sufficient to express exactly the sazne constraints. However, it will generally

be much easier to express problem constraints with the full specification language, while it
will be much easier to devise mechanisms for the minimal set.

T-specifications are based on domains for function arguments and on function ranges.

Definition 1 Let us define =_ to stand -for domain compatibility. That is, X =_ Y means

that X can replace Y, where both X and Y stand for sets of values (finite or infinite) allowed
.for domains or returned as function ranges.

Definition 2 Define the -falloudn 9 T-specifications (syntactic constraints):

1. T _'°_ - the set of values allowed at the Root, or the set of values allowed to be returned

by the evolved program, that is by functions appearing at the Root. T P_°_ actually

specifies both a domain (-for the root node) and a range (-for the program).

2. T. - Ti is the range of fi, that is the set of values returned by the function -fi.

3. T: - T_ is the domain for the fh argument of fi, that is the set of values altawed

there (which may be returned by functions used as this are_menQ.

4. T. :_ T: - compatibilities between ranges and domains

5. T. _ T R'°* - carnpatibilities between function ranges and the program range

where '?' indicates that the compatibility can be straight or it can be negated.

11 -6

T-specificationsreduceboth thespaceofprogram structuresand the spaceofinstancesof

thosestructures.Therefore,they are very powerfulconstraints.GP usesonly one terminal

set- any valuefrom thatsetmay appear inany leafofaprogram tree.Obviously,thisisnot

trueinactualprograms - differentfunctionstakedifferentarguments. T-specificationnallow

expressingsuch differences,thus allowingreductionin the space of program instancesper

program structure.Moreover, some T-specificationsalsoimplicitlyrestrictwhat function

can callother functions,effectivelyreducingthe spaceof possibleprogram structures.For

example, ifthe domain fora functionargument isfixed,then the value forthat argument

may not be obtained from a function with an incompatiblerange. Therefore,some T-

specifications can be seen analogous to function prototypes available in high level languages.

However, syntactic fit does not necessarily mean that a function shonld call another

function. One needs additional specifications based on program semantics. These are

provided by means of F-specifications, which further restrict the space of program structures

(but not program instances).

Definition 8 Define the following F-specifications (semantic constraints}:

6. F 2''t - the set of functions disallowed at the Root.

7. F, m Fi is the set of functions disallowed as direct callers to fl (generally, a function

is unaware of the caller; however, GP constructs a program tree, which represents the

dl/namic structure of the program}.

8. F*. - F_ is the set of functions disallowed as argj to fi.

Example 1 Assume a function (if argl arg2 arg3), interpreted as: if argl evaluates to

true, return the evaluation of arg2, else return the evaluation o/arg3 (assume both of

which evaluate to real numbers}. One needs to speeif_/ that argl could only be terminals

which are boolean values, or only functions which return boolean values. Assuming that

T = RltJ {T, F}, one may speci_ T_! = {T, F}. Because R a is not compatible with {T, F},

onl_l elements of the latter can be planed there.

Proposition 1 X =_ Y +-_ X C_Y.
:: X =# Y means that in places where val_es from Y are valid one may place any value from

X, or any function returning a value from X. To _arantee that no out-of-domain valnes

are used for the original Y, X may not contain values not found in Y. Therefore, it must

be a subset of Y, or it must equal Y.

Using known properties of C_, domain compatibilities could be automatically computed

(giving compatibility T-specifications #4 & #5), as long as these are restricted to syntactic
constraints.

Example 2 Assume two sets: T1 = {1, 2, 3} representing masses of physical objects in

kilograras, and T2 = {1, 2} representing times in seconds. I'h_ one may conclude that

T2 =# Tx since {1, 2} C {1, 2, 3}. But by observing the interpretations of these objects, an

obvious conclusion is that T2 _ Tx, but this is based on interpretation of these sets, which

is left to F-specifications.

11 - 7

Rules on T- and F-specifications

Given the above T-specifications and F-specifications, which can be used to express
problem constraints, an obvious issue is that of possible redundancies, or that of existence

of sufficientlyminimal specifications.We answer thesequestionsin thissection.Surpris-

ingly,aftercertainstatictransformations,onlya subsetofT- and F-specificationswillturn

out to be sufficientto expressallT- and F-specificationconstraints.This observationisex-

tremely important,as itwillallowefficientconstraintenforcementmechanisms afterinitial

preprocessing.The sufficientminimal setisthus important forefficientconstraintprocess-

ing,but not forconstr_nt specifications- specificationsare more easilyexpressedwith the

originalT-specificationsand F-specifications.This iswhy we need both, along with the
necessarytransformations.

The firststepisisto extend F-specifications.

Definition 4 Define 'complete'T-specifications as those that list all elements of Definition

2, including ranges and domains for all functions and their arguments and compatibilities
between all pairs range-domain and range--program range.

Proposition 2 The following F-specification constraints are implied by complete T-specificatior_:

VS,eF(Th T -, fk F

:: If ft returns a range which is not compatible with the domain for a specific function

argument, then fk cannot be wed to provide values for the argument. The same applies to
values returned from the program.

Proposition 2 is very important because the compatibility T-specifications (#4 _- #5)

can be automatically generated from other T-specifications, and according to the rule, they

can be automatically translated to F-specifications. The latter, as we will see, axe easier to
handle.

Note that the opposite of these implications is not true since some F-specifications are

based solely on interpretations. In other words, it is not true that ft E F_ --, Tk _ Ti#.

Note that the following is not true either: V/heF(T h =_ T_ -+ ft _ F_) (see Example 2).

Fortunately, the first implication is sufficient for us as it tells us that properly extended F**
and F P'oot specifications subsume the T. _b T: and T. _b T Root T-specifications.

Example 3 Suppose f : {fl,f2}, al -" 1, a2 : 1. Also suppose fl returns real-valued

numbers (T1 = R1), and f2 takes boo/ean arguments (T_ = {F,T}). Became TI _ T2, ,he

may conclude that fl cannot be placed as the argument to f2: fx E F 1 .

Definition 5 If F-specifications ezplioitly satisfy Proposition 2 then call them 'T-eztensive'

F-specifications. If F-specifications do not ezplicitly satisfy Proposition 2 for any function
fk E F, then call them 'T-intensive'F-specifications.

In other words, T-intensive F-specifications list only some additional constraints- which

cannot be derived from T-specifications. T-eztensive F-specifications, on the other hand,
axe those semantics-based constraints extended by syntactic constraints on function calls.

For now, we will look at redundancies among F-specifications.

ii -8

Proposition 3 Suppose f_, E F and F-specifications are T-eztensive. Then

e F,

:: If a function fi cannot call ft, then fk will never be called by fi. Also, if fk is never

called from fi, it must not be called from any of fi's arguments.

With Proposition3 one may wonder whether we need both F* and F. constraints-

they seem equivalent.The next rulesaysthey are not.

Proposition 4 Suppose fk E F and F-specifications are T-eztensive. Then

V/,eF(3je[1,a,IA 6 F/ 74 fi E F_)

The implication is true only when Proposition 8 applies.

:: If ft, cannot be called from fi by its j_h argument, it may possibly be allowed as another

argument (unless, according to Proposition 3, it cannot be called from any of the arguments).

Even though they are not equivalent,both are not needed either.Itturnsout that F."

F-specificationsare stronger.

Definition 6 If F-specifications explicitly satisfy Proposition 3, call them 'F-eztensive' F-

specifications. If F-specifications do not include any F, constraints, call them 'F-intensive'

F-specifications.

Proposition 5 F-intensive F-specifications are sufficient to ezpress all possible F-specifications.

:: According to Proposition 3, fk E Fi can be deduced when fi is ezcluded from all argu-

ments of ft. According to Proposition 4, it can happen only when Proposition 3 applies.

Therefore, F-intensive F-specifications provide sufficient information to produce F-eztensive

F-specifications.

We now returntothe questionofT-specificationsvs.F-specifications.We have seenthat

T-intensiveF-specificationsproviderestrictionson functioncallsbased on interpretations,

and that they can be extended to T-eztensiveF-specifications,which alsotake syntax

intoaccount. One question that comes to mind is:do we stillneed T-specificationsafter

they have been used to produce T-eztensiveF-specifications?In other words,isthereany

constraintin T-specificationswhich isnot expressed with T-eztensiveF-specifications?The

answer is'no'forcertainT-specifications.

Proposition 6 T-eztensive F-specifications are sufftcient to ez_press constraints imposed

by compatibility (#4 6t #5) and T, (#P,) T-speciftcations.

:: Let us look at compatibilities of the form Tk _ T_. Proposition P, says that the negated

forms (_) are all expressed in T-eztensive F-specifications. However, the straight form

(=_) can be superseded by F-specifications, which provide additional constraints based on

interpretations. Thus, if ft E F_, then the corresponding T-specification is irrelevant. On

the other hand, if ft _- F_ (in the T-intensive form), then we have two eases:

ii -9

• ifTk rL thenacco, ing to e oposition weput A intovi: A vt in T-ez ive
forms

• if Th =_ T_, then we have no mason to eztend F-specifications- thus, A f_Fij

The same can be argued for Tt, _ T l_t. As to T. T-specifications, they are sets of values

returned by functions. Therefore, they place restrictions on function calls. But, Foeztensive

F-specifications ezpress all possible restrictions on function calls. Said differently, T. is
only used for other specifications.

Definition 7 Define T-eztensive e-intensive F-specifications as the 'normal' form.

Theorem 1 (Fundamentals ofT- and F-specification constraints) Even if the user provides

only T-F-intsnsive F-specifications, T-F-eztensive F-specifications can be computed, and

along with domains and the program range they are sufficient to ezpress all T- and F-

specification constraints. Moreover, just the normal F-specifications along with domains
and the program range are sufficient as well.

:: It follows from Propositions 5 and. 6.

Based on Theorem 1,we may now restrictour discussionto F-specificationsonly,as-

suming that these are in the normal form. To make sure they axe,a simplepreprocessing
mechanism suffices.

EXPLORATION OF CONSTRAINT HANDLING METHODS

We propose to implement the specifiedconstraintsintonsmaxtn operators.To do so,

we must defineoperators"closed_ in the validprogram structure- from valid parents

alwaysgeneratevalidoffspring.This willalsorequiresn initializationprocedure with valid

programs.

Definition 8 In the program tree, we call '.function nodes' all nodes which correspond to a
function. In this case, we say that the f_nction labels the node. All other nodes are called
'terminal nodes '.

Definition 9 Define T17 to be the set of values which can replace node N. That is, 7"z7 is

the set of values that the node can assume without invalidating, w/respect to T-specifications
and F-specifications, the program tree containing that node.

Definition 10 Define _rN to be the set of functions which can replace node N. That is,

_lv is the set of functions which can label that node without invalidating, w/respect to T-
specifications and F-specifications, the program tree containing that node.

For terminal nodes,we cannot determine what other possiblev'sluescan itcontainby

justlookingst the node. We must look st the paxentof the node (unlessitisthe Root).

For functionnodes,we could eitheruse the setof valuesreturned by the functionlabeling

thatnode (T_for fl).However, afterreplacingthe functionnode with a terminai node, we

11 - 10

would anyway have to look at the context where the node appears. Therefore, we decided
to use the context information even for function nodes.

As the subsequent rules state, the above sets not only can be efficiently computed, but

some can also be guaranteed to he non-empty under certain conditions, which hold for GP.

Moreover, in the next section we will see that these sets can be precomputed for all possible

node types, and that functions to extract random elements of these sets can be precomputed

well. This will lead to a very efficient enforcement of these constraints.

Proposition 7 Assume a node N is the jth argument of fi and F-specifications are normal.

Then,
TN= Tt

= {AI(Ae F) ^ (A ¢

:: Any value that does not invalidate the domain T_ is OK. Any function that is not ezplieitly

ezcluded from F{ is OK. This is so because if fi fi Fk, that is if fl cannot be accepted as a

caller to fk, then according to Proposition 3 fk E F_, but it is not.

Proposition 8 Assume a node N is the Root and F-specifications are nolmaal. Then,

YN = T R°°_

= {AI(Ae F)^ CA ¢

::Arguments are analogous to those for Proposition 7, ezcept that the Root provides the

constraints.

Proposition 9 TN # @ for any terminal node in any valid program.

:: The valid program does not change when the terminal node is replaced with itself.

Proposition 10 As long as any function returns a value (as it is in GP}, "IN # 0 ,for any

function node in any valid program.
:: If the function node is labeled zgith fi, then it can be replaced with any terminal from Ti.

This set is not empty as long as each function returns at least one value.

Proposition 11 For any function node N of any valid t,vgr_m, _N # @.

:: If the node is labeled urith fi, then fi 6 _N.

Note that }'N is not guaranteed to be non-empty for terminal nodes. That is, some

terminals may only be used for computations, but will never be computed.

Example 4 Suppose F -- {f0}, and fD returns the closest integer to its real-valued ar-

gument. Then, T O = I, T_ = R 1, and Tl_t = I. Also, (fOE Fd) A (,fO E FO) (in the

T-F-eztensive form), but only (fo 6 Fd) is suo_eient an the normal form).

For the program (fo 3.27), the terminal node 3.27 has Y = I and ._r = @.

We can now define closed operators. We assume that all random numbers are taken

from a uniform distribution. For any node N, denote

ii- II

* r_ to be a random element from "IN

• r_F to be a random element from _'N (assuming that it is non-empty)

For any terminal node N, denote

• VN to be the current value from that node

Mutation

Assume that node N is chosen for mutation. This selection can be based on a fixed

probability of mutating any allele in all chromosomes (often called post mutation in GP),

or on selecting a random allele in a given selected parent (normal mutation in GP).

Operator 1 (mutation) If a node N is selected.for mutation, then replace it with r_ with

probability p_, or with r_ with i - p1m. If r_ is used, then recursively repeat ezactly the
same Operator I on all arguments of the selected function.

If r_N is needed for the node N and the £:t¢ set is empty, try another random node from the

sameparent (in no. l mutatio.) or abandonthe o ration (in post mutation), is
needed for any descendent of N and the _N set is empty, use rTN instead.

Proposition 12 For any valid parent program, mutation Operator 1 is guaranteed to take

place as long as p_ > O. For a function node, Operator 1 is guaranteed to take place im-

mediately. Moreover, all T- and F-specification constraints are guaranteed to be preserved.

:: The parent is valid. According to Propositions 9 and 10, the set T N is neuer empty.

Therefore, as long as this set is allowed in mutation (p1m > 0), mutation _ill e_entually take

place on any node. However, if N is a fiunction node, then according to Propositions 10 and

11 both TIC and ._N are non-empty, so mutation will immediately take place regardless of

p1m. The mutation sets are computed based on normal F-specifications, which are su_cient
according to Theorem 1.

Crossover

Because crossover with two offspring can be accomplished with two crossover operations,

each with one offspring, we will define crossover with one offspring. In unconstrained GP,

there are no specific constraints. Therefore, crossover is reduced to finding two random

crossover points. In constrained "smart" crossover, the choices of plausible crossover points

can be highly reduced. Requiting that two offspring can be generated from the same two

crossover points further reduces chances of finding such points, but can be done if necessary.

Definition 11 Define 8N,= to be the set of node_ from parent= which can replace a given
node N selected for crossover.

Proposition 13 For crossover at node Nx in parentx, and another parenta,

SN_.,={N,I VlV:::_ Tl¢_ i.fN2isaterminalnodeinparent, IA E -_1¢1 if N2 is a function node labeled fi in parent2

11 - 12

:: Crossover may be seen analogous to mutation - from parent2 select those crossover nodes

• which are also allowed in mutation for N1. And "IN and JrN are terminals and .functions

that the node N1 can mutate into. If N1 = Root then TNt and 9r_ra are terminals and
functions that the node Rootl can mutate into.

Operator 2 (crossover} If parent1 and parent2 are two crossover parents, select a random

crossover point N1 in parentl, ezeept that internal nodes have collective probability of p_

and leaves have collective probability 1 - pxc (following standard GP practice of directing

crossover into internal nodes}. Based on whether NI is the Root, apply Proposition 13 to

compute S_rl,2. If the set is not empty, then select a random node N2 (leaves and internal

nodes may be given distinct probabilities with p_}, and replace the subtree starting with N1

with that staring with N2. If the set is empty, try another crossover point N1 from parent1.

Proposition 14 For any two valid parents, Operator _ is guaranteed to find valid crossover,

and the operation will satisfy T- and F-specifications.

:: Both parents are valid. Therefore, replacing them wholly will produce a valid offspring.

Moreover, the offspring is created by replacing a subtree with another subtree from a set

computed according to T- and F-specifications. Therefore, any offspring uriU satisfy these
constraints.

Feasible Initialization Procedure

Operator 3 (initialization} Initialize the population by growing chromosomes starting each

with a random terminal node N such that v1¢ E TRnot, and then applying Operator I to that
node.

Proposition 15 The above initialization routine Operator 3 will only generate individuals

which are valid with respect T- and F-specification constraints.

:: Operator 1 guarantees a valid offspring from a valid parent (Propositions 7, 8}. And the
initial terminal node is valid as the Root.

IMPLEMENTATION

Constraint preprocessing

We do not need terminals T to be explicitly given as in GP - To, 2"**,mad T Roo_ will

determine individual sets. The preprocessing needed to ensure that F-specifications are

normal and that our operators cvax apply cma be described as follows:

1. Read T R*_, T. ranges for functions of F and T_ domains for their arguments

2. Read T-specification compatibility constraints of the form T. =_ 7"**_Lnd T. =_ T Ro°t

(not necessary if computed automatically)

3. Read (at least T-intensive F-intensive) F-specifications

11 - 13

4. Compute normal F-specifications

5. Produce functions for r 7" and r5 for all necessary sets.

Given this preprocessing mechanism, the deflned operators can be used in any GP.

Implementation

Proposition 16 r T and r _ can be precomputed, as part of the preprocessing mechanism,

into functions returning random elements of those sets.

:: For mutation, we directly need r_ and r_N. For any mutation, it is determined in one

step which of the two is needed. Based on whether N is the Root or not, Proposition 8 or 7

gives us ezactly the sets from which the random element is selected. There is a fized number

of these sets: there are ezactly 1 -F I'Iy_eF (ai) of each 7" and J: sets. All J: sets are always
finite with up to IFI elements, and 7" is either finite, or infinite when domains such as reals

are used. Moreover, these sets never change as GP operates. For the 9r sets, the elements

can be enumerated and r y can be compiled into a function returning a random function from

each enumerated set. For the 7" sets which are infinite, r T can be precompiIed to returning

a random entry from the domain. For-finite sets, the elements can be enumerated again and

r "i" can be compiled into a function returning a random element from each enumerated set.

For sets which are unions of finite or infinite subsets, one may first determine which class

of subsets to choose from (assuming that we provide some meo_ures comparing cardinalities

of finite and infinite sets, or the user provides such information), and then apply one of the

two above techniques.

For crossover, we need to use the _qlv.a sets. However, at each time we know whether

the node Na is a terminal or a function node, at which moment the problem reduces to the

same as in mutation - selecting random entries from the appropriate 7" or Y: set. Moreover,

if Pie is used, the elements may be divided into two groups from which to select the random

entry - p_ would determine which group to use.

Theorem 2 (Implementation theorem for GP) The defined mutation and crossover opera-

tion_ not observing size constraints are as e_-tcient as the standard operators in GP, when

implemented with the preprocessing mechanism.

:: In GP, mutation generates a random function from F or a random element of T.

Crossover selects a random subtree. It follows directly from Proposition I6 that in our

approach any mutation or crossover can be accomplished by selecting a random entry from

a fized set, even though the sets are more plentiful. However, for any node it is determin-

istic, in a fized time, which set should be used.

Conjecture 1 Provided T-specifications and F-specifications are the mazimal constraints

that can be implemented into a generic constrain processing methodology in GP without
invalidating Theorem 2.

:: Other constraints will require information about a node position in a tree - processing

complezity would be a function of tree depth.

11 - 14

References

[1] Lawrence Davis (ed.). Handbook of Genetic Algorithms. Van Nostrand Reinhold, 1991.

[2] David E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learn-

ing. Addison Wesley, 1989.

[3] Holland, J. Adaptation in Natural and Artificial Systems. University of Michigan Press,
1975.

[4] Kenneth E. Kinnear, Jr. (ed.) Advances in Genetic Programming. The MIT Press,
1994.

[5] John R. Koza. Genetic Programming. The MIT Press, 1992.

[6] John R. Koza. Genetic Programming II. The MIT Press, 1994.

[7] Zbigniew Michalewicz & Cezary Z. Janikow. "GENOCOP: A Genetic Algorithm for
Numerical Optimization Problems with Linear ConstraintsL To appear in Communi-

cations of the A GM.

[8] J.T. Richardson, M.R. Palmer, G. Liepins & M. Hilliard. "Some Guidelines for Ge-
netic Algorithms with Penalty Functions". In Proceedings o-f the Third International

Conference on Genetic Algorithms. Morgan Kaufmann, 1989.

11 - 15

